
Optimal Building Technology Selection 
and Operation: 

A Systemic Approach 

Michael Stadler, PhD 

Technology Evaluation, Modeling, & Assessment Group

Environmental Energy Technologies Division

July 14, 2009

MStadler@lbl.gov

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY is a U.S. Department of Energy National Laboratory operated by the University of California



Outline

� Introduction: conversion losses in the electrical system 

� Systemic analysis of building energy systems
o Integrated approach, investment decisions, 

optimal operation of equipment

� Deterministic optimization of microgrids; the Distributed 
Energy Resources - Customer Adoption Model (DER-CAM), 

Environmental Energy Technologies Division 2

Energy Resources - Customer Adoption Model (DER-CAM), 
o Modeling
o Example analysis on a single building; GHG abatement 

potential

� How to deal with uncertainty? The Stochastic Energy 
Deployment System (SEDS) project

� Conclusions



Introduction

Electricity flow, 2008*
(quads)

Why not avoid conversion  

losses by bringing some of 

the electric generation to 

the end-uses?
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distributed generation with waste heat 
utilization was the starting point 7 years ago
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Global concept now 

original 

reduced service 
demand

single building at the building site
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service 
demand 
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DER-CAM model

The Distributed Energy Resources -
Customer Adoption Model 
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Customer Adoption Model 
(DER-CAM)
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DER-CAM model

� is a deterministic Mixed Integer Linear Program (MILP), 
written in the General Algebraic Modeling System (GAMS®)

� minimizes annual energy costs, CO2 emissions, or multiple 
objectives of providing services on the building level 
(typically buildings with 250-2000 kW peak)

� produces technology neutral pure optimal results with highly 
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� produces technology neutral pure optimal results with highly 
variable runtime

� has been designed for more than 7 years by Berkeley Lab 
and academic collaborations in the US, Germany, Spain, 
Belgium, Japan, and Australia � exchange visitors

� might be ready for commercialization
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GAMS

�is a high-level modeling system for mathematical 
programming and optimization 

�consists of a command language and a set of integrated 
solvers, e.g.  LP, MILP, and also NLP
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�is entirely text based, easy to learn and use

�is cheap for academic users (~1 900$), but more expensive 
for commercial users (~11 200$) – might be a problem for 
DER-CAM commercialization plans
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Optimization

�General optimization problem

�DER-CAM is an engineering-economics optimization tool for 
decision support � kept stepwise linear to simplify problem 
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decision support � kept stepwise linear to simplify problem 
and optimization

�MILP problem: some decision variables have only integer 
solutions, e.g. the number of installed fuel cells
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Discrete versus continuous

continuous technologies 
improve runtime

captures economies of scale 
better

any capacity 
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High-level schematic 

Example Constraints
energy balance – supply & demand

financial – payback
technical – roof area for PV
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DR Input 
Parameter

Energy SalesHourly Optimal 
Operating 
Schedule



Multi-criteria objective function

Multi-criteria objective function to capture different strategies of 
building as cost minimization, CO2 minimization, or combinations
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Entire cost objective function
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Example analyses

�Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) 
to make ZNE buildings marketable by 2025

�Use of energy efficient technologies and on-site (renewable) 
energy generation
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� Our definition of the ZNEB constraint with in DER-CAM 
(Net Zero Source Energy)
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Questions

� How can zero net energy buildings (ZNEB) or zero 
carbon buildings (ZCB) be accomplished with available 
technology options?

� Can ZNEB be accomplished by photovoltaic and solar 
thermal only (Torcellini and Crawley), or would CHP      
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thermal only (Torcellini and Crawley), or would CHP      
be a wise choice?

� Do electric storage systems support PV penetration?

� What are the costs for reaching ZNEB / ZCB?
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equipment

100 kW reciprocating engine with heat 

exchanger (kW)

n/a

300 0 200

abs. chiller (kW electricity displaced) 0 238 0

solar thermal collector (kW) 0 3952 0

PV (kW) 0 2408 3162

electric storage (kWh) 0 0 1514

CA nursing home, cost minimization 
(w = 1)

marginal CO2

emission rate
utility: 513 g/kWh

can reach ZNEB 
at a cost increase 
of approx. 85%

CHP techn. plays 
a role

no subsidies
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electric storage (kWh) 0 0 1514

thermal storage (kWh) 0 9897 0

annual costs (k$) and percentage savings

total (includes annualized costs of equipment) 963.9 721.3 1782.6 829.3

savings compared to do-nothing (%) n/a 25.2 -84.9 14.0

annual utility energy consumption (GWh)

electricity 5.8 2.1 3.4 2.3

NG 5.7 8.9 0.004 7.5

energy sales (GWh)

electricity n/a n/a 3.4 4.9

annual CO2 emissions (t/a), does not contain CO2 offset due to electr. sales

emissions 3989 2704 1752 2548

savings compared to do-nothing (%) n/a 32.2 56.1 36.1

utilizing a subsidy 

for  PV and storage 
of M$13� CO2

emission reduction 
cost of $259/tCO2

compared to a 
$18/tCO2 market 
price
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CA nursing home, cost minimization 
(w=1)

ZNEB run 4, diurnal electricity pattern on a July weekday 

PV
generation

electricity 
sales

original total
electricity load

load
electricity 
from DG

electricity 
from battery

electricity 
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load
reduction

from DG

}}}}
electricity
from utility

electricity 
input to battery, 
mostly cheap 
off-peak electricity



Multi-criteria objective function 
(no ZNEB) 

w
0 1
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• 100 kW reciprocating engines
• 780 kW absorption chillers 
• 13427 kWh of electric storage
• 11239 kWh of heat storage 
• 2709 kW (20 800 m2) of PV 
• 3152 kW (6 300m2) of solar 

thermal
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CA nursing home results

� Cost minimization: PV is not used for battery charging and 
both are in competition

� CO2 minimization: PV is used for battery charging
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� CO2 minimization results in unsustainable high energy costs 
for the site � consideration of sophisticated efficiency 
measures within DER-CAM and in reality necessary

� Waste heat utilization plays a role in ZNEB
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CA CHP GHG abatement

�Objective: to estimate the 2020 CO2 abatement potential 
of CHP in medium-sized CA commercial buildings with electric 
peak loads between 100 kW and 5 MW

�Technical limitation: pick a sample of representative buildings 
from the California End-Use Survey (CEUS) and build a 
database to keep total runtime < 12 hours; automation of runs 
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�Use DER-CAM to examine CHP attractiveness in CA 
commercial buildings and its competition with technologies 
such as PV and solar thermal

�Estimate and report CO2 results relative to California Air 
Resource Board (CARB) goal of 4MW incremental CHP in 
2020 for the entire commercial sector



35% of commercial electric demand

All buildings with electric peak within range of 100 kW – 5 MW

optimizations 
take up to 10 
hours

Environmental Energy Technologies Division 20

hours
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SEDS

The Stochastic Lite Building Module 
(SLBM) of SEDS
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(SLBM) of SEDS
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The importance of uncertainty
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Government Performance Result Act of 1993 (GPRA) requires 
USDOE to predict and track the results of their programs�

Impact of policies and R&D on market penetration as well as 
CO2 emissions needs to be estimated  
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� Point estimate forecasts are not sufficient and confidence 
in the estimates can beneficially be expanded to probability 

distributions
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SEDS

Biomass

Coal

Biofuels

Heavy 
Transportation

Macroeconomics Converted EnergyPrimary Energy End-Use

Buildings

Electricity

Berkeley Lab’s responsibilities
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Macroeconomics

Natural Gas

Oil

Hydrogen

Liquid Fuels

Industry

Light Vehicles
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SLBM logic flow
inputs

(GDP, population, fuel prices, etc.)

floorspace forecast

service demand forecast
(not energy!) 

passive
high, medium and low

- Heating insulation
- Solar gains
- Daylighting

- HDD, CDD
- Lighting
- Hot water
- Refrigeration
- Ventilation
- Plug loads

Policy instruments
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high, medium and low
efficiency buildings

on-site generation (PV)

outputs (electricity, gas, light fuel demand, CO2 emissions, etc.

heating
cooling

lighting, DHW, 
refrigeration,
ventilation, etc

active

- Daylighting
- Natural Ventilation

R&D is considered 
in lighting

R&D is considered 
in PV
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� Experts  for PV, lighting and windows were asked to estimate the 

triangular distributions for technology parameters in 2010, 2015, and 

2020

� Estimates are for different levels of USDOE R&D

How to deal with uncertainty?

1
2007 (reference)

probability
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most probable

e.g. costs

e.g. 2020 and no R&D

e.g. 2015 and no R&D

largest improvement smallest improvement
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Cumulative  distributions

6000

8000
PV System Cost (US$/kW)

2007

2010(No DOE Fund)

2010(DOE Program)

0.24
Module Conversion Efficiency (%)

2020(No DOE Fund)

2020(DOE Program)

PV in commercial sector, e.g. PV system costs and efficiency
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0.10
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Example results

possible range of outcome? �probability

Commercial PV generation, no USDOE R&D
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Conclusions

� SEDS simulations allow us to assess the risk involved in 
technology penetration up to 2050

� SEDS can provide us with a portfolio of technologies with 
different risk levels, e.g. LED is less risky in any SEDS 
simulation than PV

� DER-CAM can be used for policy analyses and single 
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� DER-CAM can be used for policy analyses and single 
building optimization for a deterministic test year and 
delivers very detailed answers as
o PV is mostly not used for battery charging if cost 

minimization is considered

o PV is used for battery charging if CO2 minimization is 
considered



o Waste heat utilization plays a role in ZNEB

o 1.5 GW incremental CHP capacity in medium sized CA 
buildings can be achieved

Conclusions
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� Incorporation of uncertainty capabilities from SEDS to DER-
CAM, stochastic optimization considering uncertainty in 
energy prices, tariffs, etc.
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End

Thank you!

Questions and comments are very 
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Questions and comments are very 
welcome.


